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Chapter 1

Introduction to Inverse Problems

Inverse problems arise from the need to gain information about an unknown object of interest from

given indirect measurements. Inverse problems have several applications varying from medical

imaging and industrial process monitoring to ozone layer tomography and modelling of financial

markets. The common feature for inverse problems is the need to understand indirect measure-

ments and to overcome extreme sensitivity to noise and modelling inaccuracies. In this course we

employ both deterministic and probabilistic approach to inverse problems to find stable and mean-

ingful solutions that allow us quantify how inaccuracies in the data or model affect the obtained

estimate.

1.1 Well-posed and ill-posed problems

We start by considering the problem of finding 𝑢 ∈ R𝑑 that satisfies the equation

𝑓 = 𝐴𝑢, (1.1)

where 𝑓 ∈ R𝑘
is given. We refer to 𝑓 as observed data or measurement and 𝑢 as an unknown. The

physical phenomena that relates the unknown and the measurement is modelled by a matrix 𝐴 ∈
R𝑘×𝑑

. In real life, the perfect data given in (1.1) is perturbed by noise and we observe measurements

𝑓𝜂 = 𝐴𝑢 + 𝜂, (1.2)

where 𝜂 ∈ R𝑘
represents the observational noise.

We are interested in ill-posed inverse problems, where the inverse problem is more difficult

to solve than the direct problem of finding 𝑓𝜂 when 𝑢 is given. To explain this, we first need to

introduce well-posedness as defined by Jacques Hadamard [4]:

Definition 1.1. A problem is called well-posed if

1. There exists at least one solution. (Existence)

2. There is at most one solution. (Uniqueness)

3. The solution depends continuously on data. (Stability)

The direct or forward problem is assumed to be well-posed. The inverse problems are ill-posed

and break at least one of the above conditions.

5



6 CHAPTER 1. INTRODUCTION TO INVERSE PROBLEMS

1. Assume that 𝑑 < 𝑘 and 𝐴 : R𝑑 → R(𝐴) ⊊ R𝑘
, where the range of 𝐴 is a proper subset of

R𝑘
. Furthermore, we assume that 𝐴 has a unique inverse 𝐴−1

: R(𝐴) → R𝑘
. Because of the

noise in the measurement 𝑓𝜂 ∉ R(𝐴) so that simply inverting 𝐴 with the data given in (1.2)

is not possible. Note that usually only the statistical properties of the noise 𝑛 are known so

we cannot just subtract it.

2. Assume next that 𝑑 > 𝑘 and 𝐴 : R𝑑 → R𝑘
, in which case the system is underdetermined.

We then have more unknowns than equations which means that there are several possible

solutions.

3. Consider next the case 𝑑 = 𝑘 , in which there exists 𝐴−1
: R𝑘 → R𝑘

. The condition number

𝜅 = 𝜆1/𝜆𝑘 , where 𝜆1 and 𝜆𝑘 are the biggest and smallest eigenvalues of𝐴, may be very large.

Such a matrix is said to be ill-conditioned and is almost singular. In this case the problem

is sensitive even to smallest errors in the measurement. Hence the naı̈ve reconstruction

𝑢 = 𝐴−1 𝑓𝜂 = 𝑢 + 𝐴−1𝜂 does not produce a meaningful solution but will be dominated by

𝐴−1𝜂. Note that ∥𝐴−1𝜂∥2 ≈ ∥𝜂∥2/𝜆𝑘 can be arbitrarily large.

The last part illustrates one of the key questions of inverse problem theory: how can we stabilise

the reconstruction process while maintaining acceptable accuracy?

A deterministic way of achieving a unique and stable solution for the problem (1.2) is to use

regularisation theory. In the classical Tikhonov regularisation a solution is attained by solving

min

𝑢∈R𝑑

(𝐴𝑢 − 𝑓𝜂
2 + 𝛼 ∥𝐿𝑢∥2) . (1.3)

Above, 𝛼 acts as a tuning parameter balancing the effect of the data fidelity term

𝐴𝑢 − 𝑓𝜂
2

and the

stabilising regularisation term ∥𝑢∥2. The first half of the course will concentrate on regularisation

theory.

Another way of tackling problems arising from ill-posedness is Bayesian inversion. The idea

of statistical inversion methods is to rephrase the inverse problem as a question of statistical in-

ference. We then consider the problem

𝑓𝜂 = 𝐴𝑢 + 𝜂, (1.4)

where the measurement, unknown and noise are now modelled as random variables. This approach

allows us to model the noise through its statistical properties. We can also encode our a priori
knowledge of the unknown in form of a probability distribution that assigns higher probability to

those values of 𝑢 we expect to see. The solution to (1.4) is so-called posterior distribution, which

is the conditional probability distribution of 𝑢 given a measurement 𝑓𝜂 . This distribution can then

be used to obtain estimates that are most likely in some sense. We will return to the Bayesian

approach to inverse problems in the second half of the course

In this course we will concentrate on continuous inverse problems where in (1.1) and (1.2)

𝐴 : X → Y is a linear or non-linear forward operator acting between some spaces X and Y,

typically Hilbert or Banach spaces, the measured data 𝑓𝜂 ∈ Y is a function and𝑢 ∈ X is the quantity

we want to reconstruct from the data. Linear inverse problems include such important applications

as computer tomography, magnetic resonance imaging and image deblurring in microscopy or

astronomy. In other important applications, such as seismic imaging, the forward operator is non-

linear (e.g., parameter identification problems for PDEs). Next we will take a look at some examples

of linear and non-linear inverse problems to see what kind of challenges we face when trying to

solve them.
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1.2 Examples of inverse problems

1.2.1 Signal deblurring

The deblurring (or deconvolution) problem of recovering an input signal𝑢 from an observed signal

𝑓𝜂 (𝑡) =
∫ ∞

−∞
𝑎(𝑡 − 𝑠)𝑢 (𝑠) d𝑠 + 𝜂 (𝑡)

occurs in many imaging, and image- and signal processing applications. Here the function 𝑎 is

known as the blurring kernel.

The noiseless data is given by 𝑓 (𝑡) =
∫ ∞
−∞ 𝑎(𝑡 − 𝑠)𝑢 (𝑠) d𝑠 and its Fourier transform is 𝑓 (𝜉) =∫ ∞

−∞ exp(−𝑖𝜉𝑡) 𝑓 (𝑡)𝑑𝑡 . The convolution theorem implies

𝑓 (𝜉) = 𝑎(𝜉)𝑢 (𝜉),

and hence by inverse Fourier transform

𝑢 (𝑡) = 1

2𝜋

∫ ∞

−∞
exp(𝑖𝑡𝜉) 𝑓 (𝜉)

𝑎(𝜉) d𝜉 .

However, we can only observe noisy measurements and hence we have, in the frequency domain,

𝑓𝜂 (𝜉) = 𝑎(𝜉)𝑢 (𝜉) + 𝜂 (𝜉). The estimate 𝑢est based on the convolution theorem is given by

𝑢est(𝑡) = 𝑢 (𝑡) +
1

2𝜋

∫ ∞

−∞
exp(𝑖𝑡𝜉)𝜂 (𝜉)

𝑎(𝜉) d𝜉,

which is often not even well defined, since usually the kernel 𝑎 decreases exponentially (or has

compact support), making the denominator small, whereas the Fourier transform of the noise will

be non-zero.

1.2.2 Heat equation

Next, we study the problem of recovering the initial condition 𝑢 of the heat equation from a noisy

observation 𝑓𝑛 of the solution at some time 𝑇 > 0. We consider the heat equation on a torus

T𝑑 = (R/Z)𝑑 , with Dirichlet boundary conditions
𝜕𝑣
𝜕𝑡

− Δ𝑣 = 0 onT𝑑 × R+

𝑣 (𝑥, 𝑡) = 0 on 𝜕T𝑑 × R+

𝑣 (𝑥,𝑇 ) = 𝑓 (𝑥) onT𝑑

𝑣 (𝑥, 0) = 𝑢 (𝑥) onT𝑑

where Δ denotes the Laplace operator and D(Δ) = 𝐻 1

0
(T𝑑 )⋂𝐻 2(T𝑑 ). Note that the operator −Δ

is positive and self-adjoint on Hilbert space H = 𝐿2(T𝑑 ).
Given a function 𝑢 ∈ 𝐿2(T𝑑 ) we can decompose it as a Fourier series

𝑢 (𝑥) =
∑︁
𝑛∈Z𝑑

𝑢𝑛 exp(2𝜋𝑖 ⟨𝑛, 𝑥⟩),

where 𝑢𝑛 = ⟨𝑢, exp(2𝜋𝑖⟨𝑛, ·⟩)⟩𝐿2 (T𝑑 ) are the Fourier coefficients, and the identity holds for almost

every 𝑥 ∈ T𝑑 . The 𝐿2-norm of𝑢 is given by the Parseval’s identity ∥𝑢∥2
𝐿2

=
∑ |𝑢𝑛 |2. Remember that
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the Sobolev space 𝐻𝑠 (T𝑑 ), 𝑠 ∈ N, consist of all 𝐿2(T𝑑 ) integrable functions whose 𝛼 th
order weak

derivatives exist and are 𝐿2(T𝑑 ) integrable for all |𝛼 | ⩽ 𝑠 . The fractional Sobolev space 𝐻𝑠 (T𝑑 ) is

given by the subspace of functions 𝑢 ∈ 𝐿2(T𝑑 ), such that

∥𝑢∥2𝐻𝑠 =
∑︁
𝑛∈Z𝑑

(1 + 4𝜋2 |𝑛 |2)𝑠 |𝑢𝑛 |2 < ∞. (1.5)

Note that for a positive integer 𝑠 , the above definition agrees with the definition given using the

weak derivatives. For 𝑠 < 0, we define 𝐻𝑠 (T𝑑 ) via duality or as the closure of 𝐿2(T𝑑 ) under the

norm (1.5). The resulting spaces are separable for all 𝑠 ∈ R.

The eigenvectors of −Δ in T𝑑 form the orthonormal basis of 𝐿2(T𝑑 ) and the eigenvalues are

given by 4𝜋2 |𝑛 |2, 𝑛 ∈ Z𝑑
. We can also work on real-valued functions where the eigenfunctions

{𝜑 𝑗 }∞𝑗=1 comprise sine and cosine functions. The eigenvalues of −Δ, when ordered as a sequence,

then satisfy 𝜆 𝑗 ≍ 𝑗2/𝑑 . The notation ≍ means that there exist constants 𝐶1,𝐶2 > 0, such that

𝐶1 𝑗
2/𝑑 ⩽ 𝜆 𝑗 ⩽ 𝐶2 𝑗

2/𝑑
.

The solution to the forward heat equation can be written as

𝑣 (𝑡) =
∞∑︁
𝑗=1

𝑢 𝑗 exp(−𝜆 𝑗𝑡)𝜑 𝑗 .

We notice that

∥𝑣 (𝑡)∥2𝐻𝑠 ≍
∞∑︁
𝑗=1

𝑗
2𝑠
𝑑 exp(−2𝜆 𝑗𝑡) |𝑢 𝑗 |2 ≍ 𝑡−𝑠

∞∑︁
𝑗=1

(𝜆 𝑗𝑡)𝑠 exp(−2𝜆 𝑗𝑡) |𝑢 𝑗 |2 ⩽ 𝐶𝑡−𝑠
∞∑︁
𝑗=1

|𝑢 𝑗 |2 = 𝐶𝑡−𝑠 ∥𝑢∥𝐿2

which implies that 𝑣 (𝑡) ∈ 𝐻𝑠 (T𝑑 ) for all 𝑠 > 0.

We now have the observation model

𝑓𝜂 = 𝐴𝑢 + 𝜂,

where 𝐴 = exp(𝑇Δ) and 𝜂 is the observational noise. The noise is not usually smooth (the often

assumed white noise is not even an 𝐿2 function), and hence the measurement 𝑓𝜂 is not in the image

space im(exp(𝑇Δ)) ⊂ ∩𝑠>0𝐻
𝑠 (T𝑑 ).

1.2.3 Differentiation

Consider the problem of evaluating the derivative of a function 𝑓 ∈ 𝐿2 [0, 𝜋/2]. Let

𝐷𝑓 = 𝑓 ′,

where 𝐷 : 𝐿2 [0, 𝜋/2] → 𝐿2 [0, 𝜋/2].

Proposition 1.2. The operator 𝐷 is unbounded from 𝐿2 [0, 𝜋/2] → 𝐿2 [0, 𝜋/2].

Proof. Take a sequence 𝑓𝑛 (𝑥) = sin(𝑛𝑥), 𝑛 = 1, . . . ,∞. Clearly, 𝑓𝑛 ∈ 𝐿2 [0, 𝜋/2] for all 𝑛 and ∥ 𝑓𝑛 ∥ =√︁
𝜋
4

. However,𝐷𝑓𝑛 (𝑥) = 𝑛 cos(𝑛𝑥) and ∥𝐷𝑓𝑛 ∥ = 𝑛 → ∞ as 𝑛 → ∞. Therefore,𝐷 is unbounded. □

This shows that differentiation is ill posed when considered as an operator from 𝐿2 to 𝐿2. It

does not mean that it can not be well-posed in other spaces. For instance, it is well-posed from 𝐻 1

(the Sobolev space of 𝐿2 functions whose derivatives are also in 𝐿2) to 𝐿2. Indeed, ∀𝑢 ∈ 𝐻 1
we get

∥𝐷𝑓 ∥𝐿2 = ∥ 𝑓 ′∥𝐿2 ⩽ ∥ 𝑓 ∥𝐻 1 ≍ ∥ 𝑓 ∥𝐿2 + ∥ 𝑓 ′∥𝐿2 .
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However, since in practice we typically deal with functions corrupted by non-smooth noise, the

setting of 𝐿2 is relevant to practice, while the 𝐻 1
setting is not. Differentiation can be written

as an inverse problem for an integral equation. For instance, the derivative 𝑢 of some function

𝑓 ∈ 𝐿2 [0, 1] with 𝑓 (0) = 0 satisfies

𝑓 (𝑥) =
∫ 𝑥

0

𝑢 (𝑡) d𝑡,

which can be written as an operator equation 𝐴𝑢 = 𝑓 with (𝐴·) (𝑥) :=
∫ 𝑥

0
·(𝑡) d𝑡 .

1.2.4 Matrix inversion

In finite dimensions, the inverse problem (1.1) is a linear system. Linear systems are formally well

posed, in the sense that the error in the solution is bounded by some constant times the error

in the right-hand side. However, this constant depends on the condition number of the matrix 𝐴

and can get arbitrary large for matrices with large condition numbers. In this case, we speak of

ill-conditioned problems.

Consider the problem (1.1) with 𝑢 ∈ R𝑛
and 𝑓 ∈ R𝑛

being 𝑛-dimensional vectors with real

entries and 𝐴 ∈ R𝑛×𝑛
being a matrix with real entries. Assume further that 𝐴 is symmetric and

positive definite. We know from the spectral theory of symmetric matrices that there exist eigen-

values 𝜆1 ⩾ 𝜆2 ⩾ . . . ⩾ 𝜆𝑛 > 0 and corresponding (orthonormal) eigenvectors 𝑎 𝑗 ∈ R𝑛
for

𝑗 ∈ {1, . . . , 𝑛} such that 𝐴 can be written as

𝐴 =

𝑛∑︁
𝑗=1

𝜆 𝑗𝑎 𝑗𝑎
⊤
𝑗 . (1.6)

It is well known from numerical linear algebra that the condition number 𝜅 = 𝜆1/𝜆𝑛 is a measure

of how stably (1.1) can be solved, which we will illustrate in what follows.

We assume that we measure 𝑓𝛿 rather than 𝑓 , with ∥ 𝑓 − 𝑓𝛿 ∥2 ⩽ 𝛿 ∥𝐴∥ = 𝛿𝜆1, where ∥ · ∥2 denotes

the Euclidean norm of R𝑛
and ∥𝐴∥ the operator norm of𝐴 (which equals the largest eigenvalue of

𝐴). Then, if we further denote with 𝑢𝛿 the solution of 𝐴𝑢𝛿 = 𝑓𝛿 , the difference between 𝑢𝛿 and the

solution 𝑢 to (1.1) is

𝑢 − 𝑢𝛿 =

𝑛∑︁
𝑗=1

𝜆−1𝑗 𝑎 𝑗𝑎
⊤
𝑗 (𝑓 − 𝑓𝛿 ) .

Therefore, we can estimate

∥𝑢 − 𝑢𝛿 ∥22 =
𝑛∑︁
𝑗=1

𝜆−2𝑗 ∥𝑎 𝑗 ∥22︸︷︷︸
=1

|𝑎⊤𝑗 (𝑓 − 𝑓𝛿 ) |2 ⩽ 𝜆−2𝑛 ∥ 𝑓 − 𝑓𝛿 ∥22,

due to the orthonormality of eigenvectors, the Cauchy–Schwarz inequality, and 𝜆𝑛 ⩽ 𝜆 𝑗 . Thus,

taking square roots on both sides yields the estimate

∥𝑢 − 𝑢𝛿 ∥2 ⩽ 𝜆−1𝑛 ∥ 𝑓 − 𝑓𝛿 ∥2 ⩽ 𝜅𝛿.

Hence, we observe that in the worst case an error 𝛿 in the data 𝑦 is amplified by the condition num-

ber 𝜅 of the matrix 𝐴. A matrix with large 𝜅 is therefore called ill-conditioned. Let us demonstrate

the effect of this error amplification with a small example.
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Example 1.1. Consider the matrix

𝐴 =

(
1 1

1
1001

1000

)
,

which has eigenvalues 𝜆 𝑗 = 1 + 1

2000
±
√︃
1 + 1

2000
2
, condition number 𝜅 ≈ 4002 ≫ 1, and operator

norm ∥𝐴∥ ≈ 2. For given data 𝑓 = (1, 1)⊤ the solution to 𝐴𝑢 = 𝑓 is 𝑢 = (1, 0)⊤. Now let us

instead consider perturbed data 𝑓𝛿 = (99/100, 101/100)⊤. The solution 𝑢𝛿 to 𝐴𝑢𝛿 = 𝑓𝛿 is then

𝑢𝛿 = (−19.01, 20)⊤. Let us reflect on the amplification of the measurement error. By our initial

assumption we find that 𝛿 = ∥ 𝑓 − 𝑓𝛿 ∥/∥𝐴∥ ≈ ∥(0.01,−0.01)⊤∥/2 =
√
2/200. Moreover, the norm

of the error in the reconstruction is then ∥𝑢 − 𝑢𝛿 ∥ = ∥(20.01, 20)⊤∥ ≈ 20

√
2. As a result, the

amplification due to the perturbation is ∥𝑢 − 𝑢𝛿 ∥/𝛿 ≈ 4000 ≈ 𝜅.

1.2.5 Tomography

In almost any tomography application, the underlying inverse problem is either the inversion of

the Radon transform
1

or of the X-ray transform. For 𝑢 ∈ 𝐶∞
0
(R𝑛), 𝑠 ∈ R, and 𝜃 ∈ 𝑆𝑛−1 the Radon

transform 𝑅 : 𝐶∞
0
(R𝑛) → 𝐶∞(𝑆𝑛−1 × R) can be defined as the integral operator

𝑓 (𝜃, 𝑠) = (𝑅𝑢) (𝜃, 𝑠) =
∫
𝑥 ·𝜃=𝑠

𝑢 (𝑥) d𝑥 (1.7)

=

∫
𝜃⊥
𝑢 (𝑠𝜃 + 𝑦) d𝑦,

which, for 𝑛 = 2, coincides with the X-ray transform,

𝑓 (𝜃, 𝑠) = (𝑃𝑢) (𝜃, 𝑠) =
∫
R
𝑢 (𝑠𝜃 + 𝑡𝜃⊥) d𝑡,

for 𝜃 ∈ 𝑆𝑛−1 and 𝜃⊥ being the vector orthogonal to 𝜃 . Hence, the X-ray transform (and therefore

also the Radon transform in two dimensions) integrates the function𝑢 over lines in R𝑛
, see Fig. 1.1.

Example 1.2. Let 𝑛 = 2. Then 𝑆𝑛−1 is simply the unit sphere 𝑆 1 = {𝜃 ∈ R2 | ∥𝜃 ∥ = 1}. We can

choose for instance 𝜃 = (cos(𝜑), sin(𝜑))⊤, for 𝜑 ∈ [0, 2𝜋), and parametrise the Radon transform

in terms of 𝜑 and 𝑠 , i.e.

𝑓 (𝜑, 𝑠) = (𝑅𝑢) (𝜑, 𝑠) =
∫
R
𝑢 (𝑠 cos(𝜑) − 𝑡 sin(𝜑), 𝑠 sin(𝜑) + 𝑡 cos(𝜑)) d𝑡 . (1.8)

Note that—with respect to the origin of the reference coordinate system—𝜑 determines the angle

of the line along one wants to integrate, while 𝑠 is the offset from that line from the centre of

the coordinate system. It can be shown that the Radon transform is linear and continuous, i.e.

𝑅 ∈ L(𝐿2(𝐵), 𝐿2(𝑍 )), and even compact.

In X-ray Computed Tomography (CT), the unknown quantity𝑢 represents a spatially vary-

ing density that is exposed to X-radiation from different angles, and that absorbs the radiation

according to its material or biological properties. The basic modelling assumption for the intensity

decay of an X-ray beam is that within a small distance Δ𝑡 it is proportional to the intensity itself,

the density, and the distance, i.e.

𝐼 (𝑥 + (𝑡 + Δ𝑡)𝜃 ) − 𝐼 (𝑥 + 𝑡𝜃 )
Δ𝑡

= −𝐼 (𝑥 + 𝑡𝜃 )𝑢 (𝑥 + 𝑡𝜃 ) + O(Δ𝑡),

1
Named after the Austrian mathematician Johann Karl August Radon (16 December 1887 – 25 May 1956).
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𝜃

𝑠

𝑢 (𝑥)

𝑡

𝑡𝜃⊥

Figure 1.1: Visualisation of the Radon transform in two dimensions
2

(which coincides with the

X-ray transform). The function 𝑢 is integrated over the ray parametrised by 𝜃 and 𝑠 .

for 𝑥 ∈ 𝜃⊥. By taking the limit Δ𝑡 → 0 we end up with the ordinary differential equation

d

d𝑡
𝐼 (𝑥 + 𝑡𝜃 ) = −𝐼 (𝑥 + 𝑡𝜃 )𝑢 (𝑥 + 𝑡𝜃 ), (1.9)

Let 𝑟 > 0 be the radius of the domain of interest centred at the origin. Then, we integrate (1.9) from

𝑡 = −
√︃
𝑟 2 − ∥𝑥 ∥2

2
, the position of the emitter, to 𝑡 =

√︃
𝑟 2 − ∥𝑥 ∥2

2
, the position of the detector, and

obtain ∫ √
𝑟 2−∥𝑥 ∥2

2

−
√
𝑟 2−∥𝑥 ∥2

2

d

d𝑡
𝐼 (𝑥 + 𝑡𝜃 )
𝐼 (𝑥 + 𝑡𝜃 ) d𝑡 = −

∫ √
𝑟 2−∥𝑥 ∥2

2

−
√
𝑟 2−∥𝑥 ∥2

2

𝑢 (𝑥 + 𝑡𝜃 ) d𝑡 .

Note that, since d/d𝑥 log(𝑓 (𝑥)) = 𝑓 ′(𝑥)/𝑓 (𝑥), the left hand side in the above equation simplifies

to ∫ √
𝑟 2−∥𝑥 ∥2

2

−
√
𝑟 2−∥𝑥 ∥2

2

d

d𝑡
𝐼 (𝑥 + 𝑡𝜃 )
𝐼 (𝑥 + 𝑡𝜃 ) d𝑡 = log

(
𝐼

(
𝑥 +

√︃
𝑟 2 − ∥𝑥 ∥2

2
𝜃

))
− log

(
𝐼

(
𝑥 −

√︃
𝑟 2 − ∥𝑥 ∥2

2
𝜃

))
.

As we know the radiation intensity at both the emitter and the detector, we therefore know

𝑓 (𝑥, 𝜃 ) = log(𝐼 (𝑥 − 𝜃
√︃
𝑟 2 − ∥𝑥 ∥2

2
)) − log(𝐼 (𝑥 + 𝜃

√︃
𝑟 2 − ∥𝑥 ∥2

2
)) and we can write the estimation

of the unknown density 𝑢 as the inverse problem of the X-ray transform (1.8) (if we further as-

sume that 𝑢 can be continuously extended to zero outside of the circle of radius 𝑟 ).

1.2.6 Groundwater flow/hydraulic tomography

One goal in hydraulic tomography is to estimate the permeability of a groundwater reservoir. The

permeability describes the conductivity of the groundwater reservoir and is, e.g., used to estimate

the travel time of toxic or radioactive particles in the groundwater. To estimate the permeabil-

ity, the water pressure in several positions within the reservoir is measured. Pressure head and

permeability are linked through Darcy’s law and the (assumed) incompressibility of water.

2
Figure adapted from Wikipedia https://commons.wikimedia.org/w/index.php?curid=3001440, by Begemotv2718,

CC BY-SA 3.0.

https://commons.wikimedia.org/w/index.php?curid=3001440
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Let 𝐷 ⊆ R𝑑 (𝑑 = 1, 2, 3) be an open, bounded, connected set with smooth boundary repre-

senting the groundwater reservoir. Let 𝑎 : 𝐷 → (0,∞) be a continuously differentiable function

representing the permeability and let 𝑠 : 𝐷 → R be a continuous function representing the water

sources in the reservoir. Furthermore, assume that the water pressure is 0 outside of 𝐷 . Darcy’s

law states that the pressure 𝑝 : 𝐷 → R, the flux ®𝑞 : 𝐷 → R𝑑 , and the permeability in the reservoir

are related as follows:

®𝑞(𝑥) = −𝑎(𝑥)∇𝑝 (𝑥) (𝑥 ∈ 𝐷) .

Incompressibility on the other hand requires that the divergence of the flux is fully controlled by

in- and outflow given through the source term 𝑠:

∇ · ®𝑞(𝑥) = 𝑠 (𝑥) (𝑥 ∈ 𝐷) .

Finally, we can combine these assertions and obtain the elliptic partial differential equation

−∇ · (𝑎(𝑥)∇𝑝 (𝑥)) = 𝑠 (𝑥) (𝑥 ∈ 𝐷)
𝑝 (𝑥) = 0 (𝑥 ∈ 𝜕𝐷).

In the described set-up, we now observe the pressure 𝑝 in several positions 𝑥1, . . . , 𝑥𝐼 ∈ 𝐷 , e.g., we

observe 𝑓𝜂 = (𝑝 (𝑥𝑖) : 𝑖 = 1, . . . , 𝐼 ) +𝜂. We consider the inverse problem consisting in the estimation

of the permeability 𝑎 using the pressure measurements 𝑓𝜂 . Indeed, using noisy point evaluations

of the solution of the partial differential equation, we try to estimate its diffusion coefficient. Note

that the map 𝑎 ↦→ (𝑝 (𝑥𝑖) : 𝑖 = 1, . . . , 𝐼 ) is non-linear. Hence, this inverse problem is a non-linear

inverse problem.



Chapter 2

Generalised Solutions

Functional analysis is the basis of the theory that we will cover in this course. We cannot recall

all basic concepts of functional analysis and instead refer to popular textbooks that deal with this

subject, e.g., [2, 8, 7]. Nevertheless, we will recall a few important definitions that will be used in

this lecture.

We will focus on inverse problems with bounded linear operators 𝐴, i.e. 𝐴 ∈ L(X,Y) with

∥𝐴∥L(X,Y) := sup

𝑢∈X\{0}

∥𝐴𝑢∥Y
∥𝑢∥X

= sup

∥𝑢 ∥X⩽1
∥𝐴𝑢∥Y < ∞.

For 𝐴 : X → Y we further denote by

1. dom(𝐴) := X the domain of 𝐴,

2. ker(𝐴) := {𝑢 ∈ X | 𝐴𝑢 = 0} the kernel of 𝐴,

3. im(𝐴) := {𝑓 ∈ Y |∃𝑢 ∈ X, 𝑓 = 𝐴𝑢} the range of 𝐴.

We say that 𝐴 is continuous at 𝑢 ∈ X if for all 𝜀 > 0 there exists 𝛿 > 0 with

∥𝐴𝑢 −𝐴𝑣 ∥Y ⩽ 𝜀 for all 𝑣 ∈ X with ∥𝑢 − 𝑣 ∥X ⩽ 𝛿.

For linear 𝐾 it can be shown that continuity is equivalent to boundedness, i.e. the existence of a

constant 𝐶 > 0 such that

∥𝐴𝑢∥Y ⩽ 𝐶 ∥𝑢∥X

for all 𝑢 ∈ X. Note that the optimal constant 𝐶 actually equals the operator norm ∥𝐴∥L(X,Y) .
In this Chapter we only consider 𝐴 ∈ L(X,Y) with X and Y being Hilbert spaces. Every

Hilbert space U is equipped with an inner product, which we are going to denote by ⟨·, ·⟩U (or

simply ⟨·, ·⟩, whenever the space is clear from the context). In analogy to the transpose of a matrix,

this inner product structure together with the theorem of Fréchet-Riesz [8, Section 2.10, Theo-

rem 2.E] allows us to define the adjoint operator of 𝐴, denoted with 𝐴∗ ∈ L(Y,X), as the unique

solution to the following identity:

⟨𝐴𝑢, 𝑣⟩Y = ⟨𝑢,𝐴∗𝑣⟩X , for all 𝑢 ∈ X, 𝑣 ∈ Y .

In addition to this, the inner product is used to define orthogonality. Two elements 𝑢, 𝑣 ∈ X are

said to be orthogonal if ⟨𝑢, 𝑣⟩ = 0. For a subset X′ ⊂ X the orthogonal complement of X′
in X is

defined as

X′⊥
:=

{
𝑢 ∈ X | ⟨𝑢, 𝑣⟩X = 0 for all 𝑣 ∈ X′} .

13
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One can show that X′⊥
is a closed subspace and that X⊥ = {0}. Moreover, we have that X′ ⊂

(X′⊥)⊥. If X′
is a closed subspace then we even have X′ = (X′⊥)⊥. In this case, we can give an

orthogonal decomposition of X:

X = X′ ⊕ X′⊥.

By this notation, we mean that every element 𝑢 ∈ X can uniquely be represented as

𝑢 = 𝑥 + 𝑥⊥ with 𝑥 ∈ X′
and 𝑥⊥ ∈ X′⊥,

see for instance [8, Section 2.9, Corollary 1]. The mapping 𝑢 ↦→ 𝑥 defines a linear operator 𝑃X′ ∈
L(X,X), which is called the orthogonal projection on X′

.

Lemma 2.1 (cf. [6, Section 5.16]). Let X′ ⊂ X be a closed subspace. The orthogonal projection onto
X′, 𝑃X′ satisfies the following conditions:

1. 𝑃X′ is self-adjoint, i.e. 𝑃∗X′ = 𝑃X′ ,

2. ∥𝑃X′ ∥L(X,X) = 1 if X′ ≠ {0},

3. 𝐼 − 𝑃X′ = 𝑃X′⊥ ,

4. ∥𝑢 − 𝑃X′𝑢∥X ⩽ ∥𝑢 − 𝑣 ∥X for all 𝑣 ∈ X′,

5. 𝑥 = 𝑃X′𝑢 if and only if 𝑥 ∈ X′ and 𝑢 − 𝑥 ∈ X′⊥.

Remark 2.2. Note that for a non-closed subspace X′
we only have (X′⊥)⊥ = X′

. For𝐴 ∈ L(X,Y)
we therefore have

• im(𝐴)⊥ = ker(𝐴∗) and thus ker(𝐴∗)⊥ = im(𝐴),

• im(𝐴∗)⊥ = ker(𝐴) and thus ker(𝐴)⊥ = im(𝐴∗).

Hence, we can deduce the following orthogonal decompositions

X = ker(𝐴) ⊕ im(𝐴∗) and Y = ker(𝐴∗) ⊕ im(𝐴).

2.1 Generalised Inverses

Recall the inverse problem

𝐴𝑢 = 𝑓 , (2.1)

where 𝐴 : X → Y is a linear bounded operator and X and Y are Hilbert spaces.

Definition 2.3 (Minimal-norm solutions). An element 𝑢 ∈ X is called

• a least-squares solution of (2.1) if

∥𝐴𝑢 − 𝑓 ∥Y = inf{∥𝐴𝑣 − 𝑓 ∥Y |𝑣 ∈ X},

• a minimum-norm solution of (2.1) (and is denoted by 𝑢†) if it is a least-squares solution, and

∥𝑢†∥X ⩽ ∥𝑣 ∥X for all least-squares solutions 𝑣 .
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Remark 2.4. Since im(𝐴) is not closed in general (it is never closed for a compact operator, un-

less the range is finite-dimensional), a least-squares solution may not exist. If it exists, then the

minimum-norm solution is unique (it is the orthogonal projection of the zero element onto the

non-empty closed convex set defined by ∥𝐴𝑢 − 𝑓 ∥Y = min{∥𝐴𝑣 − 𝑓 ∥Y |𝑣 ∈ X}).

In numerical linear algebra it is a well known fact that the normal equations can be used to

compute least-squares solutions. The same holds true in the infinite-dimensional case.

Theorem 2.5. Let 𝑓 ∈ Y and 𝐴 ∈ L(X,Y). Then, the following three assertions are equivalent for
any 𝑢 ∈ X.

1. 𝐴𝑢 = 𝑃
im(𝐴) 𝑓 .

2. 𝑢 is a least-squares solution of the inverse problem (2.1).

3. 𝑢 solves the normal equation

𝐴∗𝐴𝑢 = 𝐴∗ 𝑓 . (2.2)

Remark 2.6. The name normal equation is derived from the fact that for any solution𝑢 its residual

𝐴𝑢 − 𝑓 is orthogonal (normal) to im(𝐴). This can be readily seen, as we have for any 𝑣 ∈ X that

0 = ⟨𝑣, 𝐴∗(𝐴𝑢 − 𝑓 )⟩X = ⟨𝐴𝑣,𝐴𝑢 − 𝑓 ⟩Y
which shows 𝐴𝑢 − 𝑓 ∈ im(𝐴)⊥.

Proof of Theorem 2.5. For 1 ⇒ 2: Let 𝑢 ∈ X such that𝐴𝑢 = 𝑃
im(𝐴) 𝑓 and let 𝑣 ∈ X be arbitrary. With

the basic properties of the orthogonal projection, Lemma 2.1, point 4, we have

∥𝐴𝑢 − 𝑓 ∥Y = ∥𝑃
im(𝐴) 𝑓 − 𝑓 ∥Y ⩽ inf

𝑔∈im(𝐴)
∥𝑔 − 𝑓 ∥Y ⩽ inf

𝑔∈im(𝐴)
∥𝑔 − 𝑓 ∥Y = inf

𝑣∈X
∥𝐴𝑣 − 𝑓 ∥Y,

which shows that 𝑢 is a least-squares solution.

For 2 ⇒ 3: Let 𝑢 ∈ X be a least-squares solution and let 𝑣 ∈ X an arbitrary element. We define

the quadratic polynomial 𝐹 : R → R,

𝐹 (𝜆) := ∥𝐴(𝑢 + 𝜆𝑣) − 𝑓 ∥2Y = 𝜆2∥𝐴𝑣 ∥2Y − 2𝜆 ⟨𝐴𝑣, 𝑓 −𝐴𝑢⟩Y + ∥ 𝑓 −𝐴𝑢∥2Y .

A necessary condition for 𝑢 ∈ X to be a least-squares solution is 𝐹 ′(0) = 0, which leads to

⟨𝑣, 𝐴∗(𝑓 −𝐴𝑢)⟩X = 0. As 𝑣 was arbitrary, it follows that the normal equation (2.2) must hold.

For 3 ⇒ 1: From the normal equation it follows that 𝐴∗(𝑓 − 𝐴𝑢) = 0, which is equivalent to

𝑓 − 𝐴𝑢 ∈ im(𝐴)⊥, see Remark 2.6. Since im(𝐴)⊥ =

(
im(𝐴)

)⊥
and 𝐴𝑢 ∈ im(𝐴) ⊂ im(𝐴), the

assertion follows from Lemma 2.1, point 5:

𝐴𝑢 = 𝑃
im(𝐴) 𝑓 ⇔ 𝐴𝑢 ∈ im(𝐴) and 𝑓 −𝐴𝑢 ∈

(
im(𝐴)

)⊥
.

□

Lemma 2.7. Let 𝑓 ∈ Y and let L be the set of least-squares solutions to the inverse problem (2.1).
Then, L is non-empty if and only if 𝑓 ∈ im(𝐴) ⊕ im(𝐴)⊥.

Proof. Let𝑢 ∈ L. It is easy to see that 𝑓 = 𝐴𝑢 + (𝑓 −𝐴𝑢) ∈ im(𝐴) ⊕ im(𝐴)⊥ as the normal equations

are equivalent to 𝑓 −𝐴𝑢 ∈ im(𝐴)⊥.

Consider now 𝑓 ∈ im(𝐴) ⊕ im(𝐴)⊥. Then there exists 𝑢 ∈ X and 𝑔 ∈ im(𝐴)⊥ =

(
im(𝐴)

)⊥
such that 𝑓 = 𝐴𝑢 + 𝑔 and thus 𝑃

im(𝐴) 𝑓 = 𝑃
im(𝐴)𝐴𝑢 + 𝑃

im(𝐴)𝑔 = 𝐴𝑢 and the assertion follows from

Theorem 2.5, point 1. □
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Remark 2.8. If im(𝐴) is finite-dimensional, then im(𝐴) is closed, i.e. im(𝐴) = im(𝐴). Thus, when

the measurements are finite-dimensional, there always exists a least-squares solution.

Theorem 2.9. Let 𝑓 ∈ im(𝐴) ⊕ im(𝐴)⊥. Then there exists a unique minimum-norm solution 𝑢† to
the inverse problem (2.1) and all least-squares solutions are given by {𝑢†} + ker(𝐴).

Proof. From Lemma 2.7 we know that there exists a least-squares solution. As noted in Remark 2.4,

in this case the minimum-norm solution is unique. Let 𝜑 be an arbitrary least-squares solution.

Using Theorem 2.5 we get

𝐴(𝜑 − 𝑢†) = 𝐴𝜑 −𝐴𝑢† = 𝑃
im(𝐴) 𝑓 − 𝑃im(𝐴) 𝑓 = 0, (2.3)

which shows that 𝜑 − 𝑢† ∈ ker(𝐴), hence the assertion. □

If a least-squares solution exists for a given 𝑓 ∈ Y, then the minimum-norm solution can be

computed (at least in theory) using the Moore–Penrose generalised inverse.

Definition 2.10. Let 𝐴 ∈ L(X,Y) and let

𝐴 := 𝐴|
ker(𝐴)⊥ : ker(𝐴)⊥ → im(𝐴)

denote the restriction of𝐴 to ker(𝐴)⊥. The Moore–Penrose inverse𝐴† is defined as the unique linear
extension of 𝐴−1 to

dom(𝐴†) = im(𝐴) ⊕ im(𝐴)⊥

with
ker(𝐴†) = im(𝐴)⊥.

Remark 2.11. Due to the restriction to ker(𝐴)⊥ and im(𝐴) we have that 𝐴 is injective and sur-

jective. Hence, 𝐴−1
exists and is linear and — as a consequence — 𝐴†

is well-defined on im(𝐴).
Moreover, due to the orthogonal decomposition dom(𝐴†) = im(𝐴) ⊕ im(𝐴)⊥, there exist for arbi-

trary 𝑓 ∈ dom(𝐴†) elements 𝑓1 ∈ im(𝐴) and 𝑓2 ∈ im(𝐴)⊥ with 𝑓 = 𝑓1 + 𝑓2. Therefore, we have

𝐴† 𝑓 = 𝐴† 𝑓1 +𝐴† 𝑓2 = 𝐴
† 𝑓1 = 𝐴

−1 𝑓1 = 𝐴
−1𝑃

im(𝐴) 𝑓 , (2.4)

where we have used that 𝑓2 ∈ im(𝐴)⊥ = ker(𝐴†). Thus, 𝐴†
is well-defined on the entire domain

dom(𝐴†).

Remark 2.12. As orthogonal complements are always closed we get that

dom(𝐴†) = im(𝐴) ⊕ im(𝐴)⊥ = Y,

and hence, dom(𝐴†) is dense in Y. Thus, if im(𝐴) is closed it follows that dom(𝐴†) = Y and

on the other hand, dom(𝐴†) = Y implies im(𝐴) is closed. We note that for ill-posed problems

im(𝐴) is usually not closed; for instance, if 𝐴 is compact then im(𝐴) is closed if and only if it is

finite-dimensional [1, Ex.1 Section 7.1].

If 𝐴 is bijective, we have that 𝐴† = 𝐴−1
. We also highlight that the extension 𝐴†

is not neces-

sarily continuous.
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Example 2.13. To illustrate the definition of the Moore–Penrose inverse we consider a simple

example in finite dimensions. Let the linear operator 𝐴 : R3 → R2
be given by

𝐴𝑥 =

(
2 0 0

0 0 0

) ©«
𝑥1
𝑥2
𝑥3

ª®¬ =
(
2𝑥1
0

)
.

It is easy to see that im(𝐴) = {𝑓 ∈ R2 | 𝑓2 = 0} and ker(𝐴) = {𝑥 ∈ R3 | 𝑥1 = 0}. Thus, ker(𝐴)⊥ =

{𝑥 ∈ R3 | 𝑥2, 𝑥3 = 0}. Therefore, 𝐴 : ker(𝐴)⊥ → im(𝐴), given by 𝑥 ↦→ (2𝑥1, 0)⊤, is bijective and its

inverse 𝐴−1
: im(𝐴) → ker(𝐴)⊥ is given by 𝑓 ↦→ (𝑓1/2, 0, 0)⊤.

To get the Moore–Penrose inverse 𝐴†
, we need to extend 𝐴−1

to im(𝐴) ⊕ im(𝐴)⊥ in such a

way that 𝐴† 𝑓 = 0 for all 𝑓 ∈ im(𝐴)⊥ = {𝑓 ∈ R2 | 𝑓1 = 0}. It is easy to see that the Moore–Penrose

inverse 𝐴†
: R2 → R3

is given by the following expression

𝐴† 𝑓 =
©«
1/2 0

0 0

0 0

ª®¬
(
𝑓1
𝑓2

)
=
©«
𝑓1/2
0

0

ª®¬ .
Let us consider data 𝑓 = (8, 1)⊤ ∉ im(𝐴). Then, 𝐴† 𝑓 = 𝐴†(8, 1)⊤ = (4, 0, 0)⊤.

Let us show that 𝐴†
can be characterised by the Moore–Penrose equations:

Theorem 2.14 ([3, Prop. 2.3]). The Moore–Penrose inverse 𝐴† satisfies im(𝐴†) = ker(𝐴)⊥ and the
Moore–Penrose equations

1. 𝐴†𝐴 = 𝑃ker(𝐴)⊥ ,

2. 𝐴𝐴† = 𝑃
im(𝐴)

���
dom(𝐴† )

,

3. 𝐴𝐴†𝐴 = 𝐴,

4. 𝐴†𝐴𝐴† = 𝐴†,

where 𝑃ker(𝐴) and 𝑃
im(𝐴) denote the orthogonal projections onto ker(𝐴) and im(𝐴), respectively.

Proof. First, by the definition of the Moore–Penrose inverse we have for any 𝑢 ∈ X

𝐴†𝐴𝑢 = 𝐴†𝐴(𝑃ker(𝐴)𝑢 + 𝑃ker(𝐴)⊥𝑢) = 𝐴†𝐴𝑃ker(𝐴)⊥𝑢 = 𝐴−1𝐴𝑃ker(𝐴)⊥𝑢 = 𝑃ker(𝐴)⊥𝑢,

which proves 1. Now, for any 𝑓 ∈ dom(𝐴†) we have (see (2.4))

𝐴𝐴† 𝑓 = 𝐴𝐴−1𝑃
im(𝐴) 𝑓 = 𝑃

im(𝐴) 𝑓 ,

which proves 2. Applying 𝐴 to 1., we get 3., and applying 𝐴†
to 2., we get 4., which completes the

proof. □

Corollary 2.15. The Moore–Penrose inverse is uniquely characterised by points 1 and 2 of Theo-

rem 2.14. That is, if a linear operator 𝐵 : im(𝐴) ⊕ im(𝐴)⊥ → ker(𝐴)⊥ satisfies 𝐵𝐴 = 𝑃ker(𝐴)⊥ and

𝐴𝐵 = 𝑃
im(𝐴) then 𝐵 = 𝐴†

.
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Proof. First we show that 𝐵 |
im(𝐴) = 𝐴

−1
. Indeed, let 𝑓 = 𝐴𝑢 ∈ im(𝐴), where 𝑢 ∈ ker(𝐴)⊥. Then

𝐵𝑓 = 𝐵𝐴𝑢 = 𝑃ker(𝐴)⊥𝑢 = 𝑢 = 𝐴−1 𝑓 ,

where the last equality holds since 𝐴 is bijective and hence uniquely invertible.

Now we prove that 𝐵 |
im(𝐴)⊥ = 0. Indeed, for any 𝑓 ∈ im(𝐴)⊥ we have

𝐴𝐵𝑓 = 𝑃
im(𝐴) 𝑓 = 0.

Since 𝐵𝑓 ∈ ker(𝐴)⊥ and 𝐴 is injective on ker(𝐴)⊥, we conclude that 𝐵𝑓 = 0. Therefore, 𝐵 is an

extension of 𝐴−1
to im(𝐴) ⊕ im(𝐴)⊥ with ker(𝐵) = im(𝐴)⊥. Since such an extension is unique,

𝐵 = 𝐴†
. □

Remark 2.16. If an operator 𝐵 satisfies only𝐴𝐵𝐴 = 𝐴 (resp. 𝐵𝐴𝐵 = 𝐵), it is called the inner inverse
(resp. outer inverse) of 𝐴.

Theorem 2.17 ([3, Prop. 2.4]). Let 𝐴 ∈ L(X,Y). Then 𝐴† is continuous, i.e. 𝐴† ∈ L(dom(𝐴†),X),
if and only if im(𝐴) is closed.

Remark 2.18. Theorem 2.17 is a relatively straightforward consequence of the closed graph the-
orem: using the Moore-Penrose equations (Theorem 2.14) it can be shown that the graph of 𝐴†

,

{(𝑓 , 𝐴† 𝑓 ) |𝑓 ∈ dom(𝐴†)} ⊂ dom(𝐴†) × ker(𝐴)⊥ is a closed set.

The next theorem shows that minimum-norm solutions can indeed be computed using the

Moore–Penrose generalised inverse.

Theorem 2.19. For each 𝑓 ∈ dom(𝐴†), the minimum-norm solution 𝑢† to the inverse problem (2.1)

is given via
𝑢† = 𝐴† 𝑓 .

Proof. As 𝑓 ∈ dom(𝐴†), we know from Theorem 2.9 that the minimum-norm solution 𝑢† exists

and is unique. With 𝑢† ∈ ker(𝐴)⊥, Lemma 2.14, and Theorem 2.5 we conclude that

𝑢† = 𝑃ker(𝐴)⊥𝑢
† = 𝐴†𝐴𝑢† = 𝐴†𝑃

im(𝐴) 𝑓 = 𝐴†𝐴𝐴† 𝑓 = 𝐴† 𝑓 .

□

As a consequence of Theorem 2.19 and Theorem 2.5, we find that the minimum-norm solution

𝑢† of 𝐴𝑢 = 𝑓 is a minimum-norm solution of the normal equation (2.2), i.e.

𝑢† = (𝐴∗𝐴)†𝐴∗ 𝑓 .

Thus, in order to compute 𝑢† we can equivalently consider finding the minimum-norm solution of

the normal equation.

2.2 Compact Operators

Definition 2.20. Let 𝐴 ∈ L(X,Y). Then 𝐴 is said to be compact if for any bounded set 𝐵 ⊂ X the
closure of its image 𝐴(𝐵) is compact in Y. We denote the space of compact operators by K(X,Y).

Remark 2.21. We can equivalently define an operator 𝐴 to be compact if the image of a bounded

sequence {𝑢 𝑗 } 𝑗∈N ⊂ X contains a convergent subsequence {𝐴𝑢 𝑗𝑘 }𝑘∈N ⊂ Y.
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Compact operators are very common in inverse problems. In fact, almost all (linear) inverse

problems involve the inversion of a compact operator. As the following result shows, compactness

of the forward operator is a major source of ill-posedness.

Theorem 2.22. Let 𝐴 ∈ K(X,Y) have an infinite-dimensional range. Then, the Moore–Penrose
inverse of 𝐴 is discontinuous.

Proof. As the range im(𝐴) is of infinite dimension, we can conclude that X and ker(𝐴)⊥ are also

infinite dimensional. We can therefore find a sequence {𝑢 𝑗 } 𝑗∈N with 𝑢 𝑗 ∈ ker(𝐴)⊥, ∥𝑢 𝑗 ∥X = 1 and〈
𝑢 𝑗 , 𝑢𝑘

〉
X = 0 for 𝑗 ≠ 𝑘 . Since 𝐴 is a compact operator the sequence 𝑓𝑗 = 𝐴𝑢 𝑗 has a convergent

subsequence, hence, for all 𝛿 > 0 we can find 𝑗, 𝑘 such that ∥ 𝑓𝑗 − 𝑓𝑘 ∥Y < 𝛿 . However, we also

obtain

∥𝐴† 𝑓𝑗 −𝐴† 𝑓𝑘 ∥2X = ∥𝐴†𝐴𝑢 𝑗 −𝐴†𝐴𝑢𝑘 ∥2X
= ∥𝑢 𝑗 − 𝑢𝑘 ∥2X = ∥𝑢 𝑗 ∥2X − 2

〈
𝑢 𝑗 , 𝑢𝑘

〉
X + ∥𝑢𝑘 ∥2X = 2,

which shows that𝐴†
is discontinuous. Here, the second identity follows from Lemma 2.14, point 1,

and the fact that 𝑢 𝑗 , 𝑢𝑘 ∈ ker(𝐴)⊥. □

To have a better understanding of when we have 𝑓 ∈ im(𝐴) \ im(𝐴) for compact operators 𝐴,

we will consider the singular value decomposition of compact operators.

Singular value decomposition of compact operators

Theorem 2.23 ([5, p. 225, Theorem 9.16]). Let X be a Hilbert space and 𝐴 ∈ K(X,X) be self-
adjoint. Then there exists an orthonormal basis {𝑥 𝑗 } 𝑗∈N ⊂ X of im(𝐴) and a sequence of eigenvalues
{𝜆 𝑗 } 𝑗∈N ⊂ R with |𝜆1 | ⩾ |𝜆2 | ⩾ . . . > 0 such that for all 𝑢 ∈ X we have

𝐴𝑢 =

∞∑︁
𝑗=1

𝜆 𝑗
〈
𝑢, 𝑥 𝑗

〉
X 𝑥 𝑗 .

The sequence {𝜆 𝑗 } 𝑗∈N is either finite or we have 𝜆 𝑗 → 0.

Remark 2.24. The notation in the theorem above only makes sense if the sequence {𝜆 𝑗 } 𝑗∈N is

infinite. For the case that there are only finitely many 𝜆 𝑗 the sum has to be interpreted as a finite

sum. Moreover, as the eigenvalues are sorted by absolute value |𝜆 𝑗 |, we have ∥𝐴∥L(X,X) = |𝜆1 |.
If𝐴 is not self-adjoint, the decomposition in Theorem 2.23 does not hold any more. Instead, we

can consider the so-called singular value decomposition of a compact linear operator. To prove its

existence, we will use the following lemma on the relationship between the ranges of𝐴∗
and𝐴∗𝐴:

Lemma 2.25. Let 𝐴 ∈ L(X,Y). Then im(𝐴∗𝐴) = im(𝐴∗).
Proof. It is clear that im(𝐴∗𝐴) = im(𝐴∗ |im(𝐴) ) ⊆ im(𝐴∗), so we are left to prove that im(𝐴∗) ⊆
im(𝐴∗𝐴).

Let 𝑢 ∈ im(𝐴∗) and let 𝜀 > 0. Then, there exists 𝑓 ∈ ker(𝐴∗)⊥ = im(𝐴) with ∥𝐴∗ 𝑓 −𝑢∥X < 𝜀/2
(recall the orthogonal decomposition in Remark 2.2). As ker(𝐴∗)⊥ = im(𝐴), there exists 𝑥 ∈ X
such that ∥𝐴𝑥 − 𝑓 ∥Y < 𝜀/(2∥𝐴∥L(X,Y) ). Putting these together we have

∥𝐴∗𝐴𝑥 − 𝑢∥X ⩽ ∥𝐴∗𝐴𝑥 −𝐴∗ 𝑓 ∥X + ∥𝐴∗ 𝑓 − 𝑢∥X
⩽ ∥𝐴∗∥L(Y,X) ∥𝐴𝑥 − 𝑓 ∥Y︸                        ︷︷                        ︸

<𝜀/2

+ ∥𝐴∗ 𝑓 − 𝑢∥X︸         ︷︷         ︸
<𝜀/2

< 𝜀

which shows that 𝑢 ∈ im(𝐴∗𝐴) and thus also im(𝐴∗) ⊆ im(𝐴∗𝐴). □
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Theorem 2.26. Let 𝐴 ∈ K(X,Y). Then there exists

1. a not-necessarily infinite null sequence {𝜎 𝑗 } 𝑗∈N with 𝜎1 ⩾ 𝜎2 ⩾ . . . > 0,

2. an orthonormal basis {𝑥 𝑗 } 𝑗∈N ⊂ X of ker(𝐴)⊥,

3. an orthonormal basis {𝑦 𝑗 } 𝑗∈N ⊂ Y of im(𝐴) with

𝐴𝑥 𝑗 = 𝜎 𝑗𝑦 𝑗 , 𝐴∗𝑦 𝑗 = 𝜎 𝑗𝑥 𝑗 , for all 𝑗 ∈ N. (2.5)

Moreover, for all 𝑢 ∈ X we have the representation

𝐴𝑢 =

∞∑︁
𝑗=1

𝜎 𝑗
〈
𝑢, 𝑥 𝑗

〉
𝑦 𝑗 . (2.6)

The sequence {(𝜎 𝑗 , 𝑥 𝑗 , 𝑦 𝑗 )} is called singular system or singular value decomposition (SVD) of 𝐴.
For the adjoint operator 𝐴∗ we have the representation

𝐴∗ 𝑓 =

∞∑︁
𝑗=1

𝜎 𝑗
〈
𝑓 , 𝑦 𝑗

〉
𝑥 𝑗 ∀𝑓 ∈ Y . (2.7)

Proof. Consider 𝐵 = 𝐴∗𝐴 and 𝐶 = 𝐴𝐴∗
. Both 𝐵 and 𝐶 are compact, self-adjoint and positive

semidefinite, so that by Theorem 2.23 both admit a spectral representation and, by positive semidef-

initeness, their eigenvalues are positive. Therefore, we can write

𝐶𝑓 =

∞∑︁
𝑗=1

𝜎2𝑗
〈
𝑓 , 𝑦 𝑗

〉
𝑦 𝑗 ∀𝑓 ∈ Y,

where {𝑦 𝑗 } is an orthonormal basis of im(𝐴𝐴∗) = im(𝐴) (Lemma 2.25), 𝜎 𝑗 > 0 for all 𝑗 and 𝜎 𝑗 → 0

as 𝑗 → ∞. Now consider the element 𝐴∗𝑦 𝑗 ∈ X. Since 𝜎2𝑗 is an eigenvalue of𝐶 for the eigenvector

𝑦 𝑗 , we get that

𝜎2𝑗𝐴
∗𝑦 𝑗 = 𝐴

∗(𝜎2𝑗 𝑦 𝑗 ) = 𝐴∗𝐶𝑦 𝑗 = 𝐴
∗𝐴𝐴∗𝑦 𝑗 = 𝐵𝐴

∗𝑦 𝑗

and therefore 𝜎2𝑗 is also an eigenvalue of 𝐵 (for the eigenvector 𝐴∗𝑦 𝑗 ). Now we will show that the

system {𝐴∗𝑦 𝑗/𝜎 𝑗 } 𝑗∈N forms an orthonormal basis of im(𝐴∗) = ker(𝐴)⊥. Indeed, we have〈
𝐴∗𝑦 𝑗
𝜎 𝑗

,
𝐴∗𝑦𝑘
𝜎𝑘

〉
=

1

𝜎 𝑗𝜎𝑘

〈
𝑦 𝑗 , 𝐴𝐴

∗𝑦𝑘
〉
=

1

𝜎 𝑗𝜎𝑘

〈
𝑦 𝑗 , 𝜎

2

𝑘
𝑦𝑘
〉
=

{
1, if 𝑗 = 𝑘,

0, otherwise.

Hence, {𝐴∗𝑦 𝑗/𝜎 𝑗 } 𝑗∈N are orthonormal. It is also clear that they are dense in im(𝐴∗) = ker(𝐴)⊥,

hence they form a basis. Therefore, we can choose {𝑥 𝑗 } 𝑗∈N = {𝐴∗𝑦 𝑗/𝜎 𝑗 } 𝑗∈N, i.e.

𝑥 𝑗 = 𝜎
−1
𝑗 𝐴

∗𝑦 𝑗

and we get (by construction) that

𝐴∗𝑦 𝑗 = 𝜎 𝑗𝑥 𝑗 .

We also observe that

𝐴𝑥 𝑗 = 𝜎
−1
𝑗 𝐴𝐴

∗𝑦 𝑗 = 𝜎
−1
𝑗 𝜎

2

𝑗 𝑦 𝑗 = 𝜎 𝑗𝑦 𝑗 ,
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which proves (2.5). Extending the basis {𝑥 𝑗 } of im(𝐴∗) to a basis {𝑥 𝑗 } of X, we expand an arbitrary

𝑢 ∈ X as𝑢 =
∑∞

𝑗=1

〈
𝑢, 𝑥 𝑗

〉
𝑥 𝑗 . Applying𝐴 and using the fact that X = ker(𝐴) ⊕ im(𝐴∗) (Remark 2.2),

we obtain the singular value decomposition (2.6) (and also (2.7) in a similar manner)

𝐴𝑢 =

∞∑︁
𝑗=1

𝜎 𝑗
〈
𝑢, 𝑥 𝑗

〉
𝑦 𝑗 ∀𝑢 ∈ X, 𝐴∗ 𝑓 =

∞∑︁
𝑗=1

𝜎 𝑗
〈
𝑓 , 𝑦 𝑗

〉
𝑥 𝑗 ∀𝑓 ∈ Y .

□

We can now derive a representation of the Moore–Penrose inverse in terms of the singular

value decomposition.

Theorem 2.27. Let 𝐴 ∈ K(X,Y) with singular system {(𝜎 𝑗 , 𝑥 𝑗 , 𝑦 𝑗 )} 𝑗∈N and 𝑓 ∈ dom(𝐴†). Then
the Moore–Penrose inverse of 𝐴 can be written as

𝐴† 𝑓 =

∞∑︁
𝑗=1

𝜎−1
𝑗

〈
𝑓 , 𝑦 𝑗

〉
𝑥 𝑗 . (2.8)

Proof. We know that, since 𝑓 ∈ dom(𝐴†), 𝑢† = 𝐴† 𝑓 solves the normal equations

𝐴∗𝐴𝑢† = 𝐴∗ 𝑓 .

From Theorem 2.26 we know that

𝐴∗𝐴𝑢† =
∞∑︁
𝑗=1

𝜎2𝑗
〈
𝑢†, 𝑥 𝑗

〉
𝑥 𝑗 , 𝐴∗ 𝑓 =

∞∑︁
𝑗=1

𝜎 𝑗
〈
𝑓 , 𝑦 𝑗

〉
𝑥 𝑗 , (2.9)

which implies that 〈
𝑢†, 𝑥 𝑗

〉
= 𝜎−1

𝑗

〈
𝑓 , 𝑦 𝑗

〉
Expanding 𝑢† ∈ ker(𝐴)⊥ in the basis {𝑥 𝑗 }, we get

𝑢† =
∞∑︁
𝑗=1

〈
𝑢†, 𝑥 𝑗

〉
𝑥 𝑗 =

∞∑︁
𝑗=1

𝜎−1
𝑗

〈
𝑓 , 𝑦 𝑗

〉
𝑥 𝑗 = 𝐴

† 𝑓 .

□

The representation (2.8) makes it clear again that the Moore–Penrose inverse is unbounded if

im(𝐴) is infinite dimensional. Indeed, taking the sequence 𝑦 𝑗 we note that ∥𝐴†𝑦 𝑗 ∥ = 𝜎−1
𝑗 → ∞,

although ∥𝑦 𝑗 ∥ = 1. The unboundedness of the Moore–Penrose inverse is also reflected in the fact

that the series in (2.8) may not converge for a given 𝑓 . The convergence criterion for the series is

called the Picard criterion:

Definition 2.28. We say that the data 𝑓 satisfy the Picard criterion, if

∥𝐴† 𝑓 ∥2 =
∞∑︁
𝑗=1

��〈𝑓 , 𝑦 𝑗 〉��2
𝜎2
𝑗

< ∞. (2.10)

Remark 2.29. The Picard criterion is a condition on the decay of the coefficients

〈
𝑓 , 𝑦 𝑗

〉
. As the

singular values 𝜎 𝑗 decay to zero as 𝑗 → ∞, the Picard criterion is only met if the coefficients

〈
𝑓 , 𝑦 𝑗

〉
decay sufficiently fast. In case the singular system is given by the Fourier basis, then the coefficients〈
𝑓 , 𝑦 𝑗

〉
are just the Fourier coefficients of 𝑓 . Therefore, the Picard criterion is a condition on the

decay of the Fourier coefficients which is equivalent to the smoothness of 𝑓 .
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The Picard criterion gives us another way to characterise elements in the range of the forward

operator:

Theorem 2.30. Let 𝐴 ∈ K(X,Y) with singular system {(𝜎 𝑗 , 𝑥 𝑗 , 𝑦 𝑗 )} 𝑗∈N, and 𝑓 ∈ im(𝐴). Then
𝑓 ∈ im(𝐴) if and only if the Picard criterion

∞∑︁
𝑗=1

|
〈
𝑓 , 𝑦 𝑗

〉
Y |2

𝜎2
𝑗

< ∞

is met.

Proof. Let 𝑓 ∈ im(𝐴), so that there is a 𝑢 ∈ X such that 𝐴𝑢 = 𝑓 . It is easy to see that we have〈
𝑓 , 𝑦 𝑗

〉
Y =

〈
𝐴𝑢, 𝑦 𝑗

〉
Y =

〈
𝑢,𝐴∗𝑦 𝑗

〉
X = 𝜎 𝑗

〈
𝑢, 𝑥 𝑗

〉
X

and therefore

∞∑︁
𝑗=1

𝜎−2
𝑗 |

〈
𝑓 , 𝑦 𝑗

〉
Y |2 =

∞∑︁
𝑗=1

|
〈
𝑢, 𝑥 𝑗

〉
X |2 ⩽ ∥𝑢∥2X < ∞ .

Now let the Picard criterion (2.10) hold and define 𝑢 :=
∑∞

𝑗=1 𝜎
−1
𝑗

〈
𝑓 , 𝑦 𝑗

〉
Y 𝑥 𝑗 ∈ X. It is well-defined

by the Picard criterion (2.10) and we conclude

𝐴𝑢 =

∞∑︁
𝑗=1

𝜎−1
𝑗

〈
𝑓 , 𝑦 𝑗

〉
Y 𝐴𝑥 𝑗 =

∞∑︁
𝑗=1

〈
𝑓 , 𝑦 𝑗

〉
Y 𝑦 𝑗 = 𝑃im(𝐴) 𝑓 = 𝑓 ,

which shows that 𝑓 ∈ im(𝐴). □

Although all ill-posed problems are not easy to solve, some are worse than others, depending

on how fast the singular values decay to zero.

Definition 2.31. We say that an ill-posed inverse problem (2.1) is mildly ill-posed if the singular
values decay at most with polynomial speed, i.e. there exist 𝛾,𝐶 > 0 such that 𝜎 𝑗 ⩾ 𝐶 𝑗−𝛾 for all 𝑗 .
We call the ill-posed inverse problem severely ill-posed if its singular values decay faster than with
polynomial speed, i.e. for all 𝛾,𝐶 > 0 one has that 𝜎 𝑗 ⩽ 𝐶 𝑗−𝛾 for 𝑗 sufficiently large.

Example 2.32. Let us consider the example of differentiation again, as introduced in Section 1.2.3.

The forward operator 𝐴 : 𝐿2( [0, 1]) → 𝐿2( [0, 1]) in this problem is given by

(𝐴𝑢) (𝑡) =
𝑡∫

0

𝑢 (𝑠) d𝑠 =
1∫

0

𝐾 (𝑠, 𝑡)𝑢 (𝑠) d𝑠,

with 𝐾 : [0, 1] × [0, 1] → R defined as

𝐾 (𝑠, 𝑡) :=
{
1 𝑠 ⩽ 𝑡

0 else

.

This is a special case of the integral operators as introduced in Section 1.2.1. Since the kernel 𝐾 is

square integrable, 𝐴 is compact. The adjoint operator 𝐴∗
is given by

(𝐴∗ 𝑓 ) (𝑠) =
1∫

0

𝐾 (𝑡, 𝑠) 𝑓 (𝑡) d𝑡 =
1∫

𝑠

𝑣 (𝑡) d𝑡 . (2.11)
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Now we want to compute the eigenvalues and eigenvectors of 𝐴∗𝐴, i.e. we look for 𝜎2 and 𝑥 ∈
𝐿2( [0, 1]) with

𝜎2𝑥 (𝑠) = (𝐴∗𝐴𝑥) (𝑠) =
1∫

𝑠

𝑡∫
0

𝑥 (𝑟 ) d𝑟 d𝑡 .

We immediately observe that 𝑥 (1) = 0 and further

𝜎2𝑥 ′(𝑠) = d

d𝑠

1∫
𝑠

𝑡∫
0

𝑥 (𝑟 ) d𝑟 d𝑡 = −
𝑠∫

0

𝑥 (𝑟 ) d𝑟,

from which we conclude 𝑥 ′(0) = 0. Taking the derivative another time yields the ordinary differ-

ential equation

𝜎2𝑥 ′′(𝑠) + 𝑥 (𝑠) = 0,

for which solutions are of the form

𝑥 (𝑠) = 𝑐1 sin(𝜎−1𝑠) + 𝑐2 cos(𝜎−1𝑠),

with some constants 𝑐1, 𝑐2. In order to satisfy the boundary conditions𝑥 (1) = 𝑐1 sin(𝜎−1)+𝑐2 cos(𝜎−1) =
0 and 𝑥 ′(0) = 𝑐1/𝜎 = 0, we choose 𝑐1 = 0 and 𝜎 such that cos(𝜎−1) = 0. Hence, we have

𝜎 𝑗 =
2

(2 𝑗 − 1)𝜋 for 𝑗 ∈ N ,

and by choosing 𝑐2 =
√
2 we obtain the following normalised representation of 𝑥 𝑗 :

𝑥 𝑗 (𝑠) =
√
2 cos

((
𝑗 − 1

2

)
𝜋𝑠

)
.

According to (2.5) we further obtain

𝑦 𝑗 (𝑠) = 𝜎−1
𝑗 (𝐴𝑥 𝑗 ) (𝑠) =

(
𝑗 − 1

2

)
𝜋

∫ 𝑠

0

√
2 cos

((
𝑗 − 1

2

)
𝜋𝑡

)
d𝑡 =

√
2 sin

((
𝑗 − 1

2

)
𝜋𝑠

)
,

and hence, for 𝑓 ∈ 𝐿2( [0, 1]) the Picard criterion becomes

2

∞∑︁
𝑗=1

𝜎−2
𝑗

(∫
1

0

𝑓 (𝑠) sin
(
𝜎−1
𝑗 𝑠

)
d𝑠

)2
< ∞ .

Expanding 𝑓 in the basis {𝑦 𝑗 }

𝑓 (𝑡) = 2

∞∑︁
𝑗=1

(∫
1

0

𝑓 (𝑠) sin
(
𝜎−1
𝑗 𝑠

)
d𝑠

)
sin

(
𝜎−1
𝑗 𝑡

)
,

and formally differentiating the series, we obtain

𝑓 ′(𝑡) = 2

∞∑︁
𝑗=1

𝜎−1
𝑗

(∫
1

0

𝑓 (𝑠) sin
(
𝜎−1
𝑗 𝑠

)
d𝑠

)
cos

(
𝜎−1
𝑗 𝑡

)
.

Therefore, the Picard criterion is nothing but the condition for the legitimacy of such differen-

tiation, i.e. for the differentiability of the Fourier series by differentiating its components, and it

holds if 𝑓 is differentiable and 𝑓 ′ ∈ 𝐿2( [0, 1]).From the decay of the singular values we see that

this inverse problem is mildly ill posed.
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Example 2.33 (Heat equation). Consider the problem of recovering the initial condition 𝑢 of the

heat equation from an observation 𝑓 of the solution at some time 𝑇 > 0 (see Section 1.2.2). We

consider the heat equation on (0, 𝜋) × R+, with Dirichlet boundary conditions
𝑣𝑡 − 𝑣𝑥𝑥 = 0 on (0, 𝜋) × R+,

𝑣 (0, 𝑡) = 𝑣 (𝜋, 𝑡) = 0 onR+,

𝑣 (𝑥,𝑇 ) = 𝑓 (𝑥) on (0, 𝜋),
𝑣 (𝑥, 0) = 𝑢 (𝑥) on (0, 𝜋) .

The solution to the forward problem (determine 𝑓 given 𝑢) is given by

𝑓 = 𝐴𝑢 :=

∞∑︁
𝑗=1

exp(− 𝑗2𝑇 )𝑢 𝑗 sin( 𝑗𝑥),

where 𝑢 𝑗 = ⟨𝑢, sin( 𝑗 ·)⟩ are Fourier coefficients of 𝑢. Hence, singular values of 𝐴 are given by

𝜎 𝑗 = exp(− 𝑗2𝑇 ), 𝑗 ∈ N,

and

1

𝜎 𝑗
= exp( 𝑗2𝑇 ).

The singular values of 𝐴 decay exponentially and the inverse problem is severely (exponentially)

ill-posed.
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